If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-5z-5=0
a = 1; b = -5; c = -5;
Δ = b2-4ac
Δ = -52-4·1·(-5)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{5}}{2*1}=\frac{5-3\sqrt{5}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{5}}{2*1}=\frac{5+3\sqrt{5}}{2} $
| 9-8b+6b=9-8b+6b | | 1/2x^2=5x | | 5/3x2-x-1/3=0 | | 1/3(9+3)=3x+1 | | 6x+38=170+3x | | 2.1/2x=9 | | (3k^2-5k)=(-6+2k^2) | | 4(-2+7x)-8x=8x+40 | | 4(v-2)-6v=-6 | | -33=27-15x | | k÷5.2+81.9=47.2 | | 4(k+4)=6k+22 | | 3(2g-11)=6g-33 | | 8z-16=7z+21 | | 21/2x=9 | | 2x12x+1=9-10x | | -24g=13 | | 3x^2-26+35=0 | | 4(6-2x)=-6x+24-4x | | ((x-2)^3+8)/x=x^2-6x+12 | | 2=3x+17/4 | | 60+(15+8)w=195 | | X+4+1/2x+x-4=46 | | 7x-10=3(x+1)-14 | | (2n-9/7)=(3-n/4) | | 2(2r-3)=4r-6 | | |m-2|-7=-3 | | 15+.9x-x=8 | | 8=6x-15 | | A(5)=700-18w | | (2n9/7)=(3-n/4) | | 3(3x-1)^2=21 |